翻訳と辞書 |
Gamma camera : ウィキペディア英語版 | Gamma camera
A gamma camera, also called a scintillation camera or Anger camera, is a device used to image gamma radiation emitting radioisotopes, a technique known as scintigraphy. The applications of scintigraphy include early drug development and nuclear medical imaging to view and analyse images of the human body or the distribution of medically injected, inhaled, or ingested radionuclides emitting gamma rays. ==Construction==
A gamma camera consists of one or more flat crystal planes (or detectors) optically coupled to an array of photomultiplier tubes in an assembly known as a "head", mounted on a gantry. The gantry is connected to a computer system that both controls the operation of the camera as well as acquisition and storage of acquired images. The construction of a gamma camera is sometimes known as a compartmental radiation construction. The system accumulates events, or counts, of gamma photons that are absorbed by the crystal in the camera. Usually a large flat crystal of sodium iodide with thallium doping in a light-sealed housing is used. The highly efficient capture method of this combination for detecting gamma rays was discovered in 1944 by Sir Samuel Curran〔("Counting tubes, theory and applications", Curran, Samuel C., Academic Press (New York), 1949 )〕〔(Oxford Dictionary of National Biography )〕 whilst he was working on the Manhattan Project at the University of California at Berkeley. Nobel prize-winning physicist Robert Hofstadter also worked on the technique in 1948 (). The crystal scintillates in response to incident gamma radiation. When a gamma photon leaves the patient (who has been injected with a radioactive pharmaceutical), it knocks an electron loose from an iodine atom in the crystal, and a faint flash of light is produced when the dislocated electron again finds a minimal energy state. The initial phenomenon of the excited electron is similar to the photoelectric effect and (particularly with gamma rays) the Compton effect. After the flash of light is produced, it is detected. Photomultiplier tubes (PMTs) behind the crystal detect the fluorescent flashes (events) and a computer sums the counts. The computer reconstructs and displays a two dimensional image of the relative spatial count density on a monitor. This reconstructed image reflects the distribution and relative concentration of radioactive tracer elements present in the organs and tissues imaged.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gamma camera」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|